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In many decision and control problems the system's state can be
observed only at considerable cost. Typical examples include: The
coﬁtrol of a population of hypertensives in which the variables of
interest are the awareness, attitudes, knowledge, and control status of
the population [1], [2], [3]; machine inspection and replacement [4],
[5], [6]; and the example which prompted this work, the management of
a randomly varying fishery [7], [8], [9]. These problems share the
common characteristics of Markovian-like dynamics with incompletely
known state information. This paper derives efficient policy éﬂglvalue
iteration algorithms for computing optimal control policies for such
problems. The major assumptions in the formulation are that the underlying
dynamic process is Markovian (discrete time) and that the state dynamics
process 1is obscured between information seeking actions, which we term
surveys. We also assume the surveys in general provide perfecfﬂ—
information on the state of the process.

The primary problem which motivated this research relates to the
management of a fishery resource. In essence, the problem is to outline
either the fishing effort or the maximum permissible catch in a time
period (1 year). The state of the fishery at a given time can be defined
as the number of fish present or more generally, as the weight of the
fish present, the biomass. The general relationship is that too large
a catch in a period of low biomass can seriously deplete the réfgyrce-—
even eliminate it. The biomass can be accurately measured by surveying

each year before the fishing season commences. The problem we address

is how frequently should we survey?
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This paper derives algorithms for two problems. The first problem
is to determine the optimal survey interval s, s > 1, and the optimal
control for the system as a function of some initial state of information.
Thé second more general problem is to derive controls and survey times
based on the time since a given state was last observed.

The algorithms are efficient in the sense that they outperform the
naive approach to the problem. TFor a problem with N states and the same
A actions per state, a simple approach 1s to take the s-fold Cartesian
product of the action space as the new action space, and redefine the
expected one~period reward as the expected reward from choosing any
s~vector of actions. This reformulated problem is a completely observed
Markov decision process that requires a search over NeA® alternatives
for each iteration of a successive approximation algorithm. The algorithms
proposed in this paper require a search over at most N+ A +s alternatives
and often much fewer alternatives than that. For example, in [10], a
problem is solved with 25 states, 26 actions, and s = 4. For the naive
approach, this would require a search over 11,424,400 alternatives each
iteration, while the algorithms of this paper required a search over far

fewer than the 2600 alternatives per iteration upper bound.

1. ANALYSIS AND THE BASIC ITERATION ALGORITHM
In this section we analyze the cost of a given policy and derive the
value iteration and policy iteration algorithms. We assume the system
-
can be described by an N state discrete time Markov process. Whenever

the process is observed perfect information on the state is obtained,

but the observations need not be taken each time period. The process is
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controlled by choosing one of A alternatives each time period with the ath
alternative represented by an NxN state transition matrix P(a) and a
reward vector Y(a). The observation or survey process is assumedito take
place instantaneously at the beginning of a time period, before a control
alternative has been selected for that time period. We consider that the
system will be observed every s time units using a survey which costs
C(s). Costs are discounted by a discount factor B, 0 < 8 < 1.

', ™,

A control policy is defined by a sequence of functions §(i, s
0 <s'<s,1<1i<N, where s' is the number of time units that have
elapsed since the last survey was performed, i is the state tha;iﬁas
observed at the last survey, and 7 is the current N-vector of state

', 7). (The vector

probabilities just prior to the application of (i, s
T is written m = (ﬂl, LPYRERR ﬂN) where Ty is the probability that the
dynamic process actually is in state i.) We seek a control policy to

maximize the expected discounted rewards of operating the system over an

infinite horizon. A control or decision policy for fixed s is denoted by

§ = (5(0), 6(s~1)> :

For a fixed intersurvey interval s the cost of a given policy is
developed by defining f(i, s', ), 0 < s'.i s as the expected discounted
reward of operating the system given that s' time units have elapsed since
the last survey, that i was the state observed at the last survey and that
T is the state probability vector s' time units since the last syrvey.

The functions f(i, s', °*) satisfy the following system of equations:



4

f(i, s', ™) = Tw(d(i, s', TT)) + Bf(i, s' +1, nP(&(i, s', n)))
0 <s' <s-1 )
£(1, s, m) = wE(0) - C(s) (1)

where f(0) is the column vector (f(l, 0, el), f(2, 0, ez), ..., f(N, O, eN)>
and e is the state probability vector (0, O, ..., 0, 1, 0, ..., 0) with

1 in the ith position representing perfect observation of state i. Note
that for a given policy § the state probability vector T is completely
determined by i and s'; thus equation (1) can be more compactly represented

—— .

by suppressing the dependence on i as follows:

= ny(é(s')) +-Bf<s' + 1, WP(G(S'))) 0 <s' <s-1

m£(0) - C(s) (2)

f(s', m

i
IA

f(s, m

We note that for any policy & the functions 6(i, s', m) simplify as
follows:
§(, 0, ei) = §(1, 0)
5(i, 1, m = 6(1, 1, (1, 1)) = §(i, 1) where (3)

m(l, 1) = eiP(é(i, Oa

S, 2, M = 5(1, 2, m(2, i)>= §(i, 2) where
m(2,1) = (1, i)P(G(i, 1))
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The state probability vectors m(1l, i), m(2, i), ..., (s, 1) are called
the descendents of state i under policy 8, and are important to the
algorithms to follow. Indeed, with the descendents identified, éﬁuation
(2) is a linear system easily solved for the column vector f(0). It is
straightforward to show that an optimal policy 6* exists that maximizes
f(s', M) for all s' by noting that for fixed s the process is a partially
observed Markov process with N°*s states. Existence follows from [11].

An optimal policy is defined, in general, over all possible states
of knowledge at each point in time; however, in fact it is sufficient to
consider only those states of knowledge that are descendents og'épmpletely
observed states. Any other states of knowledge are in effect transient,
and once a survey is performed will never reoccur. Thus the problem is
reduced from considering N states at time s' = 0 and the s-1 (N-1)-dimensional
simplices of states of knowledge to simply N states at time s' =0 and N
(N)~-vectorsat each of the s-1 succeeding time periods between 6béervations.
Thus an optimal policy can be defined as that policy 6*(8) that maximizes
f(4i, 0) and f(i, s', w(s', i) 1<s"<s,1<1i<N.

The existence of an optimal policy allows us to concentrate on finding
an efficient procedure for improving a policy in order to develop a policy
iteration algorithm. We proceed by decomposing the functions £(i, s', m)
into f(4, s', m) = ma(i, s'). From equations (1) and (2) we can show that

the column vectors a(i, s') satisfy:
a(d, s') = Y(S(i, s')) + BP(G(i, s'»(x(i, s' + 1) 0 <s

a(i, s) = f(s, 0) - C(s)] (4)

where 1 is a column vector of omnes.
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We can use the return functions of a given policy § to find a policy 8
that has rewards at least as great as the rewards from §. This fact is
proven in theorem 1 below. Before stating and proving the procedure, we
need to examine more closely the function f(i, s', m). In general, a
given policy defines this function at N points in the space I[, the space
of all possible states of knowledge. These N points are the descendents
of each state i at time s'. In order to say one policy has an improved
expected reward over another policy, we must be able to define f(i, s', )
at values of m which are not one of the N descendents of the given policy.
Note that for a given policy &, £(i, s', m) = ma(i, s') corresggggs to the
cost of applying policy &8(i, s"), §(i, s"' + 1), ..., §(4, s-1) starting at
time s' with state of information m. Clearly, we should choose the sequence
§(i, s"), 8(i, s' + 1)... that maximizes our expected reward. Thus we can
let f(1, 8', 7)) = max To(R, s'). This definition allows f(i, s', T) to be
well defined over t&e entire space II. (A rigorous proof for the sufficiency

of this definition can be found in {11].)

We can identify a new policy § based on § as follows:

g(i, 8) = argmax[m(s, 1)v(a) + Bn(s, 1)P(a)f(0)]
? (5)
§(i, s') = argmax[m(s', i)y(a) + Bmaxm(s', 1)P(a)l(L, s' + 1)]

a L
0<s'<s-1

where the a's are defined recursively

&(i, s)

Y<<§(s>) OO

a(i, s")

y(8<s')> + sp(S(s'))&(E, s' + 1)

where % achieved the inner maximum in (5).
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In essence, a new policy is found for each state and each intersurvey time
point. The points %(1, i), E(Z, 1), «.uy %(s—l, i) together with ﬁ(s, i)

are the descendents of i for the new policy 8. We now prove that”§ is an

improved policy over §.

Theorem 1. a) The expected value of following policy §(s) is

greater than or equal to the expected value of following poliey &(s)

having just observed state i. That is,

£(1, 0) > £(i, 0) for each i

g

A~ " % *
b) If § maximized f(i, s) for all i then § = § such that § maximizes

f<i, s', n(s', i)) where m(s', 1) is the s'-th descendent of i under

*
policy 6 .

Proof. Let E(i, s', (s’, i)) be the "improved" value after applying

(5). At s' = s,

'f<i, s, m(s, i)) - f(i, s, (s, i)) = (s, 1)(Y<§(s)> - Y<<S(s)>

+ p(&(s)>f(0) - P<G(s)>f(0)> (6)
which is nonnegative since maximums are taken in (5). Suppose for
s' =8, s-1, s-2, ..., j it is true that f(i, s') - £(i, s) > 0 for
all states i. Then at s' = j-1:

[

f(i, j-1, 7(3-1, i)> T(j-1, i)y(@(j—l)) + Bmzxﬂ(j—l, i)a(ﬁ(j-DA(Q, i)
(N

> (-1, DY(8G-D) + B (3-1, i)P(m—l))&(z, 1)
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the last inequality again because (5) implies finding a maximum. By

definition, m(j-1, i)P<6(j—l)) = m(j, 1). At §, 8(j) was found to

have been an improved policy for mw(j, i). This implies

maxn(3-1, DP(8G-D)a, 9 2> 7G-1, DP(SG-D)al, o

) (8)

f(i, i, (4, i))

Combining equations (7) and (8) we have

|v

Y?(i, j-1, w(j-1, 1)) m(j-1, i)Y<6(j-—l)> + Bm(j-1, 1)P<<S(j—1)>oc(i, hD

id (9)

— .

f<i, j-1, m(§-1, 1)>

The inductive proof yields the desired result that £(i, 0) > £(i, 0)
for all states i. The improvement algorithm (5) starts with an initial
value £(0), and adds a value equal to the s—period expected reward of

policy 6. Let G(4, 8) be the expected s-period reward when state i is

observed at the survey, and policy § is followed. Then (5) and (9) imply:
(i, 0) = G(1, 8) + BT (s+l, 1)£(0) (10)

Define A(i) = £(i, 0) - £(i, 0), let E(i, 0) be the value of 8
calculated in the policy evaluation stage, and let Af(i) = %(i, 0) - £(4i, 0).

Then it follows from standard arguments in Markov decision processes that
A£(1) = A() + T(s+l, 1)Af (11)

The remainder of the proof of parts a) and b) follow as in |
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Substituting (6) into (7) we have

%(i, s', (s, i)> - f(i, s, m(s', i)) = AL, s")

+8ln(s’, i)p(&(s')>a(z, s'+1) - n(s', i)P(&(s')>oc(§, s'+1))

+ s[%@, s'+1, T(s' +1, i)) - f(i, s'+1, 7(s', 1)?(6»(3)))} (8)
Noting that f|i, s'+1, ﬁ(s', i)P<5(3)> = max ﬁ(s', i)P(&(s))a(l, s'+1)
)

yields for 0 < s' < s-1:

E(i, s', T(s', i)) - f(i, s', %(s', i)) = A, s")

+ e[%<1, s 1, M(s'+1, 1)) - f<i, s' 1, A(s'+1, 1))] (9)

A

and for s: f<i,s,‘§(s, i» - f(i, s, %(s, i)) = %(s, i) - [%(0) - f(O)] .

Equation (9) and the fact that A(i, s') > O imply that:

~

féi, s', %(s', i)> - f<i, s', %(s', i)) >0 0 <s' <s-1 1.0)

Letting s' = 0 (for which %(O, i) = w(0, 1) = ei) proves part a) of the
theorem.

Part b) of theorem guarantees that nonoptimal policies will always be
improved. To prove the assertion we assume that 8§ cannot be improved by

*
(5) but that § # 6§ is optimal. Optimality implies that:

* * *
f (i, s', ™ (s', i)) 3_f<i, s', ™ (s', i)) -~ (11)
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Noting that for fixed s the set of all policies i1s finite, we now
have the rudiments for a policy iteration algorithm. In order to determine
the optimal survey interval--which may be unbounded--we would comﬁhte an
optimal policy-and its expected return for increasing intervals until
increasing the survey interval further decreasesthe expected rewards for
some state 1 immediately after observation. In using the algorithms
summarized in the next section, the optimal policy and/or optimal value
functions derived for an interval of length s are used to initialize the
iterations for finding an optimal policy and value for an interval of
length s+ 1. 1In practice, to date, only a few iterations are rqgé}red to

find the optimal policy and/or value function for each sampling interval

s > 1.

2. POLICY AND VALUE ITERATION ALGORITHMS FOR FINDING 6*
The algorithm to find 6* for fixed s is summarized in Figure 1. For
C(s) = 0 and s = 1 the algorithm reduces to the standard policy iteration
algorithm.
Figure 2 summarizes an equivalent value iteration algorithm. For
C(s) = 0 and s = 1, the algorithm described is Jacobi iterates of successive
approximations. The usual upper bounds, as in [12] are still valid, however,

the lower bounds given in [12] are not valid except when C(s) = 0 and s = 1.

3. MAXIMAL INFORMATION ALGORITHM
The algorithms of the preceding section do not make full usg of the
available information in that they do not allow surveys to occur--if
warranted--before the obligatory survey interval s. In this section we

relax this restriction, and augment the policy alternative space by a
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survey alternative. The survey, if chosen, is assumed to occur immediately
following a transition, i.e., at the start of a new time period, and does
not consume a time period. If the survey is éhosen at the start of a time
per;oa in effect two alternatives are chosen: first the survey alternative
and then a regular alternative based on the perfectly observed state
obtained from the survey. It is straightforward to modify these assumptions
to allow for surveys that require a full time period.

We proceed by modifying equation (2) to include the survey alternative.
We denote the survey alternative as alternative A+1. As above, we assume
a survey will be performed following the sth interval unless performed

before that time. The cost of a given policy § for these assumptions is

given by (12), where the points 7m(s', 1) are the descendents of the policy §.

For 0 < s' < s-1:

£(i, 0) = eiy<6(i, 0)> + sf(i, i, ©(1, 1))

‘Mf(i, s', (s, 1)) - | T, 1)Y(6(s', 1)> + Bf(i, s', m(s'+1, 1)) , 8(1,8") #A+1

(s, 1) £(0) - C(s), §(1, s') = A+1

(12)

(s, i) £(0) - C(s)

f<i, s, m{s, i)>

By defining f(i, s', m) = maximum Ta(l, s') as in section 1, we construct
the policy improvement algorithm as follows: An improved policy 8 is

found by
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m(s, 1)Y(a) + Bu(s, 1)P(a)£f(0)
8(1, s)

= argmax
3, Al p(s, 1)£(0) - c(s)
(13)
m(s, i)y(a) + Bmaxn(s, i)P(a)a(L, s' + 1)
S(i,s')= argmax o
a, A+l

n(s, 1)£(0) - c(s)

where the g's are defined recursively as

a1, s) y(S(s)) + sp(&(s))f<0)

a1, s") Y<3(S')> + BP@(S))&(E, s' + 1) -

where Q achieves the inner maximum in (13).

The improvement algorithm will converge to a possibly suboptimal

policy that is to a policy at least optimal for some survey interval

s' < s. Suppose that a policy is reached that will always survey at

an interval s' less than s. Then the states m(i, j), s' < j < s are
transient, in the sense that once a survey is performed, they will

never be reached. The algorithm in (13) must be perturbed to consider

i
S

the possibly transient policies. To do this, at s' - 1 an improved
policy must be found by searching over all two-period policies, that is:

m(s' -1, 1)Y(a) + BmaxT(s' - l)P(a)&(i, s', a')

~ 1
8¢i, s' - 1) a', A+l

argmax

a, A+l m(s'~-1, 1)f(0) - c(s) ¢

]

where a(i, s', a) = y(a') + BP(a")a(%, s' + 1)
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The result is a pair of policies S(i, s' - 1) and g(i, s') = a'. With
this pertubation added if the algorithm converges to a policy that will
always survey within an interval s' < s, the improvement algorithm can
be éeen to guarantee that nonoptimal actions will be improved, as we now

show.

Theorem 2. In the general case in which surveys (perfect state

information) are allowed before time period s, the expected value of

following the policy § given in equation (13), having just observed state

i, is greater than or equal to the expected cost of following policy &, i.e.

f(1, 0) > £(i, 0) for all i

In addition, if 6(s) cannot be improved, then § = 6*.

Proof: Essentially the same as theorem 1, with the following definition.
Assume that 8(i, s') = A + 1. Then nominally &(i, s"), s > s" > s' is
undefined. We define this alternative to be the A + lst (survey) as
follows: 1If 8(i, s') = A+ 1, then 8(i, s") = A+ 1 for s > s" >s'.
With this definition, f£(i, s", m) = £(i, s', T) and the proof proceeds as

in theorem 1.

A policy iteration algorithm and a value iteration algorithm for

Figs. 3,4 the maximal information case are described in Figures 3 and 4.

4. AN EXAMPLE
To illustrate the algorithms, we consider Howard's toymaker problem
[4], revamped to allow for surveys to provide state information. The

original problem has the following parameters:
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State i . Alternative a Pij(a) y(a, 1)
1. No advertising 0.5 0.5 6
1. Successful toy 2. Advertising 0.8 0.2 4
1. No research 0.4 0.5 -3
2. Unsuccessful toy 2. Research 0.7 0.3 -5

We employ a discount rate of B = 0.9 the optimal solution for the completely
observed problem is 6(1, 0) = &8(2, 0) = 2, £(1, 0) = 22.2, f(2, 0) = 12.3
with C(s) = Q. ;
To address the problem without perfect information at each time period

we expand the alternative space to consider four alternatives including one

in which both advertising and research occur.

Alternative a P(a) Y(a)

Advertising/ (0.8 0.2 | 4
no research L 0.4 0.6 ] L -5 |
— — p— —

No advertising/ 0.5 0.5 4
no research 0.7 0.3 | -5 ]
~ ™

No advertising/ 0.5 0.5 | 6
research _ 0.4 0.6 ] L -3
Advertising/ 0.8 0.2 2]
research | 0.7 0. -7 ]

Survey - -C(s)
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We arbitrarily choose C(s) = 0.20, and begin the algorithm with s = 1,
equivalent to perfect observation each time period at a cost C(s). We
begin with 6(i, 0) = 1, 8(i, 1) = survey and find that an optimal policy

and its returns are as follows:

* *
i s' Policy § (i, s') Return f (i, s')
0
Survey
2 0
2 1 Survey

We proceed to s = 2 beginning the iteration with an optimal policy for s = 1.
*
Then §(i, s') = & (i, s'), s' = 0, 1 and we set 8§(i, 2) = survey. After

iterations the solution is:

* *
i s' Policy § (4, s'") Cost £ (i, s')
0
1 2 Survey
2 0
2
2 2 Survey

Proceeding to s = 3 and starting with 53(1, s') = 62*(1, s'), s' =0, 1, 2,
with 63(1, 3) representing survey, in ___ iterations we find the same
optima} cost and control and conclude that s = 2 1is optimal.
It is illustrative to consider the sensitivity of an optimal policy
Fig. 5 (and optimal value of s) to changes in C(s). Figure 5 shows these changes.

Note that for C(s) > 1.00 it is optimal not to survey.
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5. SUMMARY AND CONCLUSIONS

The algorithms presented in this paper generalize policy iteration to
the case of periodic perfect observation of a Markov process. The algorithms
are based on an analysis of the process as a partially observable Markov
decision process. The resulting algorithms appear to be highly efficient,
requiring only a few extra iteratiéns for each stage s.

The policy iteration algorithms have been programmed in APL and have
been run interactively on the computer at the National Institute of Health/
a DEC 10) and on the University of Hawaii's IBM 370/158. The value iteration
algorithms have been programmed in FORTRAN and have been run on the University
of Hawaii's IBM 370/158. Further computational experience with these algorithms

on real life fisheries problems are reported in [10]. (Reference to trade names

does not imply endorsement by the National Marine Fisheries Service, NOAA.)

Another potential use for these algorithms is in solving machine
inspection and replacement problems. The algorithms solve the renewal
probiem in a straightforward fashion with a minimum of computational
effort. More importantly, the algorithm allows the machine inspection and
replacement problem to be modeled and solved in more detail than the usual
two or three state, two or three action problem. Using the value iteration
algorithm, we have solved a 25 state problem with 26 actions per state for
s = 4 in slightly over 2 minutes of CPU time, including time to compile the
program and to calculate from a problem defined on a continuous state space
the transition probabilities and reward vector on a discrete grid. A
problem this size would be impractical to solve using either the naive
approach of forming an equivalent completely observed problem, or else by

using the algorithm for a full scale partially observed Markov decision
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problem given in [11]. The algorithm can also solve larger problems with
less restrictive assumptions than the regenerative stopping algorithm
discussed in |

- In all the examples we have solved so far, information seeking has been
found to be costly. Over a broad range of values of s, little value is
added to the expected return function by surveying more frequently, while
the surveys themselves have been expensive. Yet decisiommakers appear to
still favor frequent surveys. We can speculate two reasons for this.
Firstly,‘managers may be incorrect in their valuation of information.
Secondly, the information may be deemed important either to improve the
transistion probability model, or else as a final safeguard or hedge against
risk. Martin [13] considers surveying costs in a Bayesian context in order
to determine more' accurately the transition probabilities; An area of
future research would be to combine our approach with his in order to
estimate the tradeoffs of increased value by not surveying but decreased

certainty about the estimates of the transistion probabilities.



Policy improvement stage

8(1, s) = argmax[m(s, 1)y(a) + Bm(s, 1)P(a)£(0)]
a
§(1, s') = argmax[n(s, 1)y(a) + Bmzxﬂ(s, 1)P(a)a(L, s' + 1)]

a
1<s'<s-~-1

"~
where a(i, s)

y(&(s)) + sp(@(s>)f(0)

il

Y(S(s'>> + sp(&(s'))&(i, s' + 1)

~
a(i, s")

~ *
If policy § = §, then § = §

Policy evaluation

For policy §, calculate f(i, 8'"), 0 < s' < s from the following

equations:
f(i, s', m(s', i)) = n(s', i)Y<6(i, s')> +Bf<i, s'H1,m(s' +1, i)>
£(1, s) = m(s, 1)£(0) - C(s)

where m(i, 0) = e, ;m(s', 1) = m(s' - 1,1)?(8(1, s'-—l)>

Calculate o.(i, s') from the following equations

Mi,§)=yéuqsw>+ﬁw@ﬁ,§0uﬁ,§+l) 0<s'<s-1

oal(i, s) = £(0) - C(s)i

Figure 1. Policy iteration for fixed s.




Choose value function

£(0) = [£¢1, 0), £(2, 0), ..., £(N, 0)]

Choose a policy 6 = (G(i, s'))

for 0 < s' < g~1

Calculate descendents D = (ﬂ(s', i))
ie. m(0,1) = ey, m(s', 1) = m(s'-1, i)P<<5(i, s' - 1)>

s' >0

a(i, s) = £00) - c(s)l

£(i, s') = max[n(s', 1)y(a) + Bmaxm(s', 1)P(a)a(R, s' +1)]
a 2

* *
with o and £ the maximizing arguments above:
*

~ * X A * ~
a(l,s') = y(a )+ BP(a )a(® , s'"+1);6(1, s') = a

If maximum change in £(0) < g, STOP

Set £(i, 0) = a(i, 0)

Set & 8

Figure 2. Value iteration algorithm for fixed s.



Policy evaluation

For policy &8, calculate f(i, s'), 0 < s' < s from the equations:
£(1, 0) = w0, Dy(5(1, 0)) +8ECL, 1

for 1 < s' < s-1:
m(s', i)Y(cS(i, s')) +Bf(i, s'+1,n(s'+1, i)) if 8§(i,s'") #A+1

f<i, s', w(s', i)) .
n(s', 1)£f(0) - C(s) if §(i,s8")=A+1

]

f(i, s, (s, 1)) m(s, 1)£(0) - C(s)1

where (0, 1) = e m(s',i)=m(s' -1, i)P(S(i, s' —l)) , s'>1

calculate the a(i, s') from:
auq0)=yéui,m>+ep@(hoﬁau,n
Y(S(i, s')) +BP(6(i, s'))on(i, s'+1) if §(i,s") # A+1
o(i, s') =

£(0) - C(s)1 if 6(1,8') = A+1

a(i, s) = £(0) - C(s);

Set § = &

N

Policy improvement

(s, 1)y(a) + Bmaxm(s, 1)P(a)a(l, s' + 1)

8(1‘., s') = argmax L
B A s, 1£(0) - c(s)

Y(S(s')) * Bp(&s'))&(@, s'+ 1)

where &(i, g') =
£(0) - c(s)

If8§ =26, thend = &

Figure 3. Policy iteration for variable survey interval.



Choose value function

£(0) = (f(l, 0), £(2, 0), ..., £(N, o>)

Choose policy § = <§(i, S')) l

y
Calculate descendents D = [nw(s', 1)]

i.e. m(0, 1) = e ;T(s', i) = 7n(s' - l,i)P(G(i, s' - 1)), s' >0

max[ﬂ(s',i)Y(a)+~maxﬂ(s',i)P(a)a(Q,s'-+l)]
~ a L
f(i, s',ﬂ(s',i)) = max
m(s', 1)£(0) - C(s)

% *
With o , 2 the maximizing arguments above, calculate:
* k A *
y(a ) +P(a)ald , s'+1), a#A

a(i, s') =
f(0) - C(s); ,a=A

If maximum change in f(0) < g, STOP

Set £(1, 0) = a(i, 0), & = &

Figure 4. Value iteration for variable survey interval.




